Correction du devoir surveillé $n^{\circ}5$

Partie I : valeur exacte de $\cos(\frac{2\pi}{5})$

1. P(1) = 0 donc X - 1 divise le polynôme P.

/1

2. En effectuant la division euclidienne de P par X-1, on obtient $P=(X-1)(X^4+X^3+X^2+X+1)$. On note $Q=X^4+X^3+X^2+X+1$.

/1

3. $\mathbb{U}_5 = \{1, \mathbf{e}^{\frac{2i\pi}{5}}, \mathbf{e}^{\frac{4i\pi}{5}}, \mathbf{e}^{\frac{6i\pi}{5}}, \mathbf{e}^{\frac{8i\pi}{5}}\}$. D'où $P = (X-1)(X-\mathbf{e}^{\frac{2i\pi}{5}})(X-\mathbf{e}^{\frac{4i\pi}{5}})(X-\mathbf{e}^{\frac{6i\pi}{5}})(X-\mathbf{e}^{\frac{8i\pi}{5}})$. Par conséquent, $P = (X-1)(X^2 - 2\cos(\frac{2\pi}{5})X + 1)(X^2 - 2\cos(\frac{4\pi}{5})X + 1)$.

/1

4. Par conséquent, $Q = (X^2 - 2\alpha X + 1)(X^2 - 2\beta X + 1)$.

/1

5. En développant, on obtient $Q = X^4 - 2(\alpha + \beta)X^3 + 2(1 + 2\alpha\beta)X^2 - 2(\alpha + \beta)X + 1$. Par identification des coefficients : $\alpha + \beta = -\frac{1}{2}$ et $\alpha\beta = -\frac{1}{4}$.

/1

6. Donc α et β sont solutions de l'équation (E): $x^2 + \frac{1}{2}x - \frac{1}{4} = 0$. Cette équation admet pour discriminant $\Delta = \frac{5}{4}$ et donc ses solutions sont $\frac{-1+\sqrt{5}}{4}$ et $\frac{-1-\sqrt{5}}{4}$. Le réel α étant positif, $\alpha = \frac{-1+\sqrt{5}}{4}$.

Partie II : une équation dans $\mathbb{R}[X]$

Analyse:

On suppose que l'équation (E) admet une solution non nulle que l'on note P.

1. On note d le degré de P et $P=\sum_{k=0}^{d}a_kX^k$ où $(a_k)_{k\in \llbracket 0,d\rrbracket}\in \mathbb{R}^{d+1}$ avec $a_d\neq 0$.

Le coefficient dominant de (X-1)P' est da_d et celui de nP est na_d .

Or (X-1)P'=nP, donc $da_d=na_d$. De plus $a_d\neq 0$ donc d=n i.e. $\deg(P)=n$.

/1

2. (a) En évaluant en 1 l'égalité (X-1)P'=nP, on trouve P(1)=0. Donc 1 est une racine de P.

/1

(b) Montrons par récurrence que pour tout $k \in \mathbb{N}$, $(X-1)P^{(k+1)} = (n-k)P^{(k)}$. Comme P vérifie (X-1)P' = nP, la propriété est vraie pour k=0. Soit $k \in \mathbb{N}$, supposons que $(X-1)P^{(k+1)} = (n-k)P^{(k)}$. En dérivant, on trouve :

$$(X-1)P^{(k+2)} + P^{(k+1)} = (n-k)P^{(k+1)}$$
 i.e. $(X-1)P^{(k+2)} = (n-(k+1))P^{(k+1)}$

La récurrence est établie. Conclusion : $\forall k \in \mathbb{N}, (X-1)P^{(k+1)} = (n-k)P^{(k)}$.

/1

- (c) D'après la question précédente, pour tout $k \in \mathbb{N}$, $(n-k)P^{(k)}(1) = 0$. Donc, pour tout $k \in [0, n-1]$, $P^{(k)}(1) = 0$. De plus, $P^{(n)}(1) = n!a_n \neq 0$. Conclusion : 1 est racine de P de multiplicité n.
 - ______
- 3. P est un polynôme de degré n et on a trouvé n racines comptées avec multiplicité, d'où P est scindé. Plus précisément, il existe $\lambda \in \mathbb{R}^*$ tel que $P = \lambda (X 1)^n$.

/1

Synthèse et conclusion :

4. Pour $P = \lambda (X - 1)^n$ avec $\lambda \in \mathbb{R}^*$, on a $(X - 1)P' = n\lambda (X - 1)^n = nP$. Conclusion l'ensemble des solutions du problème est $\{\lambda (X - 1)^n, \lambda \in \mathbb{R}\}$.

/1

Partie III: étude du point fixe du sinus cardinal

1. $f(x) = 0 \iff x \neq 0 \text{ et } \sin(x) = 0 \iff x \in \{k\pi, k \in \mathbb{Z}^*\}.$

Donc la courbe \mathscr{C}_f coupe l'axe des abscisses aux points d'abscisses $\{k\pi, k \in \mathbb{Z}^*\}$.

/1

2. Soit $x \neq 0$, $f(-x) = \frac{\sin(-x)}{-x} = \frac{\sin(x)}{x} = f(x)$ et f(-0) = f(0). Donc la fonction f est paire.

Par ailleurs, $|\sin(x)| \le 1$, d'où $\lim_{x \to +\infty} \frac{\sin(x)}{x} = 0$. De même, $\lim_{x \to -\infty} \frac{\sin(x)}{x} = 0$.

/1

3.	On a déjà que f est continue sur \mathbb{R}^* car f est le quotient de deux fonctions continues sur \mathbb{R}^* avec celle si	ituée au
	dénominateur ne s'annulant pas. De plus, $\sin(x) \sim x$, d'où $\frac{\sin(x)}{x} \sim 1$. D'où $\lim_{x\to 0} \frac{\sin(x)}{x} = 1 = f(0)$ dor	nc f est
	continue en 0 et par conséquent sur \mathbb{R} .	/1
4.	La fonction f est dérivable sur \mathbb{R}^* car f est le quotient de deux fonctions dérivables sur \mathbb{R}^* avec celle si	ituée au
	numérateur ne s'annulant pas. De plus, pour tout $x \in \mathbb{R}^*$, $f'(x) = \frac{x \cos(x) - \sin(x)}{x^2} = \frac{g(x)}{x^2}$.	/1
5.	On a $g(x) = x \left(1 - \frac{x^2}{2} + o(x^2)\right) - \left(x - \frac{x^3}{3!} + o(x^3)\right) = -\frac{x^3}{3} + o(x^3)$. Ainsi $g(x) \approx -\frac{x^3}{3}$.	/1

6. Ainsi
$$f'(x) \sim \frac{-\frac{x^3}{3}}{x^2} \sim -\frac{x}{3}$$
. D'où $f'(x) \to 0$. Par conséquent, f est continue sur \mathbb{R} , et $f'(x) \to 0$. D'après le théorème de la limite de la dérivée, f est dérivable en 0 et $f'(0) = 0$.

Pour tout $k \in \mathbb{N}$, on note I_k l'intervalle $[k\pi, (k+1)\pi]$.

- 7. La fonction g est continue et dérivable sur I_0 . Pour tout $x \in I_0$, $g'(x) = -x\sin(x) \le 0$. De plus, il y a égalité uniquement pour x = 0 ou $x = \pi$. L'ensemble des points dans I_0 où la fonction g' s'annule est un ensemble fini, donc g est strictement décroissante sur I_0 . Donc pour tout $x \in I_0 \setminus \{0\}$, g(x) < g(0) = 0. On en déduit que f' < 0 sur $[0,\pi]$ et f'(0) = 0. L'ensemble des points de I_0 où la fonction f' s'annule est un ensemble fini, donc f est strictement décroissante sur I_0 .
- 8. Soit $k \in \mathbb{N}^*$.
 - (a) f est continue sur $[k\pi, (k+1)\pi]$, dérivable sur $]k\pi, (k+1)\pi[$ et $f(k\pi) = f((k+1)\pi) = 0$. D'après le théorème de Rolle, il existe un réel $\alpha_k \in]k\pi, (k+1)\pi[$ tel que $f'(\alpha_k) = 0$.
 - (b) Supposons par l'absurde qu'il existe un réel $\beta_k \in]k\pi, (k+1)\pi[$ tel que $f'(\beta_k) = 0$. La fonction g est continue et dérivable sur I_k . On a $g(\beta_k) = \beta_k^2 f'(\beta_k) = 0$ et $g(\alpha_k) = \alpha_k^2 f'(\alpha_k) = 0$. D'après le théorème de Rolle, il existe γ_k entre α_k et β_k tel que $g'(\gamma_k) = 0$ ce qui est impossible. En effet, pour tout $x \in]k\pi, (k+1)\pi[, g'(x) = -x\sin(x) \neq 0$. Conclusion: il existe un unique réel $\alpha_k \in]k\pi, (k+1)\pi[$ tel que $f'(\alpha_k) = 0$.
 - (c) On a $f'(k\pi) = \frac{(-1)^k}{k\pi}$ et $\exists ! \alpha_k \in]k\pi, (k+1)\pi[$ tel que $f'(\alpha_k) = 0$. Comme f' est continue sur I_k :

 si k est pair alors f' est strictement positive sur $[k\pi, \alpha_k[$ et f' est strictement négative sur $]\alpha_k, (k+1)\pi[$. Donc f est strictement croissante sur $[k\pi, \alpha_k]$ et f est strictement décroissante sur $[\alpha_k, (k+1)\pi]$.

 si k est impair alors f' est strictement négative sur $[k\pi, \alpha_k[$ et f' est strictement positive sur $]\alpha_k, (k+1)\pi[$. Donc f est strictement décroissante sur $[k\pi, \alpha_k]$ et f est strictement croissante sur $[\alpha_k, (k+1)\pi]$.
- 9. (a) Considérons $h: x \mapsto \frac{x^2}{2} g(x)$. Donc h est de classe \mathscr{C}^1 sur \mathbb{R} et $h'(x) = x + x \sin(x) = x(1 + \sin(x))$ pour tout $x \in \mathbb{R}$. On en déduit que $h' \leqslant 0$ sur \mathbb{R}_- et $h' \geqslant 0$ sur \mathbb{R}_+ . Donc h est décroissante sur \mathbb{R}_- et croissante sur \mathbb{R}_+ . Ainsi, h admet un minimum en 0 qui vaut h(0) = 0. Conclusion : h est positive d'où $\forall x \in \mathbb{R}, g(x) \leqslant \frac{x^2}{2}$.

On admet qu'on a aussi l'inégalité $g(x) \geqslant -\frac{x^2}{2}$ pour tout $x \in \mathbb{R}$.

- (b) On a $f'(x) = \frac{g(x)}{x^2}$ pour tout $x \in \mathbb{R}^*$. D'après la question précédente, on a, pour tout $x \in \mathbb{R}^* : -\frac{1}{2} \leqslant f'(x) \leqslant \frac{1}{2}$.

 Par ailleurs f'(0) = 0, donc $\forall x \in \mathbb{R}$, $|f'(x)| \leqslant \frac{1}{2}$.
- 10. Supposons qu'il existe $c \in \mathbb{R}$ un point fixe de f, f(c) = c, donc $c \neq 0$ et $c \neq 1$ (car f(0) = 1 et $f(1) = \sin(1) \neq 1$). On a $\sin(c) = c^2$, donc $-1 \leqslant c \leqslant 1$. De plus, la fonction sinus est négative sur [-1,0[. On en déduit que s'il existe un point fixe c de f alors $c \in]0,1[$. Considérons $s: x \mapsto f(x) x$. Les points fixes de f sont les zéros de f. La fonction f est continue sur f et f
- 11. On considère la suite $(u_n)_{n\in\mathbb{N}}$ de premier terme $u_0=0$ et telle que $u_{n+1}=f(u_n)$ pour tout $n\in\mathbb{N}$.
 - (a) On a montré dans la question 7. que f est strictement décroissante sur I_0 et donc sur [0,1]. On en déduit que si $x \in [0,1]$ alors $0 < f(1) \le f(x) \le f(0) = 1$. Donc [0,1] est stable par f.

Comme $u_0 = 0 \in [0, 1]$, on a que $u_n \in [0, 1]$ pour tout $n \in \mathbb{N}$.

/1

- (b) La fonction f est continue sur [0,1], dérivable sur]0,1[et pour tout $x \in]0,1[$, $|f'(x)| \leq \frac{1}{2}$. /1D'après l'inégalité des accroissement finis, pour tout $n \in \mathbb{N}$, $|f(u_n) - f(c)| \leq \frac{1}{2}|u_n - c|$ i.e. $|u_{n+1} - c| \leq \frac{1}{2}|u_n - c|$.
- (c) D'où, pour tout $n \in \mathbb{N}$, $|u_n c| \leqslant \frac{1}{2^n} |u_0 c|$, et donc $\lim_{n \to +\infty} |u_n c| = 0$ i.e. $u_n \underset{n \to +\infty}{\longrightarrow} c$.
- (d) Pour tout $n \in \mathbb{N}$, $|u_n c| \leqslant \frac{c}{2^n} \leqslant \frac{1}{2^n}$. On choisit donc n tel que $\frac{1}{2^n} \leqslant 10^{-3}$ i.e. $n \geqslant \log_2(10^3)$.
- (e) La fonction f est décroissante sur [0,1] donc $f \circ f$ est croissante sur [0,1]. On en déduit que $(u_{2n})_{n \in \mathbb{N}}$ et $(u_{2n+1})_{n \in \mathbb{N}}$ sont monotones et de sens de monotonie inverse. Or $u_2 \geqslant u_0 = 0$, donc $(u_{2n})_{n \in \mathbb{N}}$ est croissante et $(u_{2n+1})_{n \in \mathbb{N}}$ est décroissante. La suite (u_n) converge vers c, donc les sous-suites (u_{2n}) et (u_{2n+1}) converge également vers c. On en déduit alors que les suites $(u_{2n})_{n \in \mathbb{N}}$ et $(u_{2n+1})_{n \in \mathbb{N}}$ sont adjacentes.

Donc, pour tout $n \in \mathbb{N}$, $u_0 \leqslant u_{2n} \leqslant c \leqslant u_{2n+1} \leqslant u_1$. On a donc $|u_n - c| \leqslant |u_n - u_{n+1}|$ pour tout $n \in \mathbb{N}$.

Conclusion: $\forall \varepsilon > 0, \ \forall n \in \mathbb{N}, \ |u_n - u_{n+1}| \leqslant \varepsilon \implies |u_n - c| \leqslant \varepsilon.$

/2

```
(f) import math
  def f(x):
    if x==0:
        return 1
    else:
        return math.sin(x)/x

def erreur(e):
    u=0
    v=f(0)
    while abs(u-v)>e:
        u=v
        v=f(v)
    return u
```

/2